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ABSTRACT
•

Necessary condos for the opts	 o# junctions between singular
•	 and nonsingular subares are dev*WV4d for singular optimal control problems.

Previously known necesrmy conditions concerning the continuity and smooth-
ness of a piecewise analytic optimal control at a junction are clarified and
extended. The main result is that the sum of the order of the singular arc
and the lowest order time derivative of the control which is discontinuous at
the junction must be an odd integer when-the strengthened generalized
Legendre-Clebsch condition is satisfied. Also, new necessary conditions
which do not require an analyticity assumption are developed. These aid in

L
	

characterizing problems which may possess nonanalytic junctions.
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1. Introduction

Optimal control problems in which the control variables appear only
linearly admit the possibility of the occurrence of singular extremals. The

y

	

	 analysis of such problems is complicated by the fact that the solution, in
r

general, consists of some combination of singular and nonsingular subares ,
the number and sequence of which are not known a priori. If the solution is
totally singular, recent results [1). [2] are available to prove optimality in a
large number of cases. If the solution is totally nonsingular, it is the famil-
iar bang-bang control generated by a switching function with isolated zeros,
as determined by the minimum principle. However, the mathematical char-
acterization of optimal controls which contain both singular and nonsingular
subares is far from complete.

s

	

	 This paper is concerned with the problem of characterizing the con-
tinuity and smoothness properties of the optimal control at a junction between
singular and nonsingular subares. The analysis was motivated by the pre-
liminary results obtained in this direction by Kelley, Kopp, and Moyer [3] ani
Johnson [4]. We shall comment on their results in a later section.

A
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2. Problem Statement

The class of problems to which this analysis applies is the following.

Determine the scalar control u* (t) , t c [to..  tf] which minimizes the functional

J(u) G (tf , x (tf)) + [Lo (t, x) + Lu (t,x)u]dt	 (2.1)
to

where the system equation is

i = fo (t , x) + u it , x)u	 (2.2)

subject to the constraints
- l u it}l <= K(t), t e [to ,tf]	 (2.3)

_o-.xito},tf , x(t} E S	 (2.4)

Here x is an n-vector and S is a closed subset of Rya . The scalar functions
fo , u, Lo, L  are assumed to be analytic in both arguments in a suitable do-
main, and K (t) is assumed to be continuous and piecewise analytic for
t c [to , tf], i. e. , K(t) is permitted to have a finite number of "corners". Of
course, the usual case I u 11 K with K = coast, is included as a special case.
We restrict attention to a scalar control in order to simplify notation. A

similar analysis holds for each component of a vector contr '.

Clearly, the Hamiltonian for this problem is linear in the control, i. e.

If

H (t. x, a , u) _ ^Tfo it , x) + Lo, x) + [XT u (t , x) + Lu (t , x) ]u
	

(2.5)

The multiplier equations are then given by

	

-Hx (t , x, X , u)	 (2. 6)

• where Hx is also linear in u. The coefficient of u in (2.5) is called the

switching function, which we shall designate as # (t) , i.e.,

	

_(t}u{^,xit}, Ott))	 (2.7)

The minimum principle (i.e., Pontryagin's maximum principle in a

minimum form) states that for almost , every ,t E [te ,tfI and each u satisfying
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•	 u ( g K(t), the optimal control u* (t) must satisfy	 .

	

H(t,X(t),xft),U*M) = H(t,X(t),x(t).u) 	 (2.8)

Therefore, as is well known, on each open subinterval of [to, tf] there are two

distinct possibilities for u*. Either

	

u* (t) _ - K (t) s gn + (t) 	 (2-9)
or

+(t) $ 0	 (2.10)

Equations (2.9) and (2. 10) define, respectively, the nonsingular and singular

subares of the optimal control.

The class of problems defined above will be called singular control

problems, even though only a portion of the total trajectory may be singular.
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3. Notation and Definitions

The following definitions will clarify the terminology used in this

paper.

DEFINITION 1. A function g is said to be piecewise analytic on an intervali
(a,b) if it is piecewise continuous on (a, b) and analytic on each subinterval for

which g is continuous.

DEFINITION 2. A junction between singular and nonsingular subares of the

control is said to be a nonanalytic junction if the control is not piecewise ana-

lytic in any neighborhood of the junction.

DEFINITION 3. In a singular control problem, let (dzq/dtzq) [Hu (t, x, X) ] be

the lowest order total derivative of H u in which u appears explicitly. Then

the integer q is called the order of the singular arc.

Implicit in Definition 3 is the property- that u first appears explicitly

•	 in an even order derivative of Hu , i, e, , it is correct to refer to q as an

integer. For a proof of this property see Robbins [5].

We also need the well known generalized Legendre-Clebsch necessary

condition for optimality of singular subares [3].

THEOREM. (Generalized Legendre-Clebsch condition) On an optimal singu-

lar subarc of order q, it is necessary that

zq
(- 1 ) q I =Hu '_ 0

dt
(3.1)

Condition (3.1) hereafter will be called the GLC condition. By the

strengthened GLC condition we mean that strict inequality holds in (3.1).

In this paper it will be convenient to consider the lowest order deriva-

tive of a function to be its zeroth derivative, by which we mean the function

itself. We shall use the notation

i
g(o) $ g, g(1) = d g	 i = 1,2,...

dt
Also, where the context makes the meaning clear, we shall use u to designate

the optimal control. instead of u*.
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4. The Junction Theorems

As indicated in Section 1, the theory for totally singular and totally
nonsingular optimal controls is rather well developed. The main difficulty

with singular control problems occurs when both'singular and nonsingular

subares are present. Since a useful sufficient condition for such problems is

not available, one is led naturally to the study of necessary conditions which

are valid in the neighborhood of a junction between singular and nonsingular

subares. It is expected that such conditions can be used to eliminate candi-

date extremals and/or predict beforehand the way in which singular and non-

singular subares must be joined, e, g. , whether the optimal control is con-

tinuous or discontinuous at a junction. 	 .

If the optimal control is well-behaved in a neighborhood of a junction,

•	 then the following property must hold.

THEOREM 1. Let t c be a point at which singular and nonsingular subares of

an optimal control u are joined, and let q be the order of the singular arc.

Suppose the strengthened GLC condition is satisfied at.t c , i. e. , (-1)q (8/8 u)HUiq)
> 0, and assume that the control is piecewise analytic in a neighborhood of tc.
Let u (r) (r '_ 0) be the lowest order derivative of u which is discontinuous at
tc . Then q + r is an odd integer.

Proof. Since H (zq) is the lowest order time derivative of Hu which

contains u explicitly, from (2.2), (2. 5), and (2.6) we see that it must have the
form

Hutq)(t,x, X,u) a A(t,x,X) + B(t,x,X)u	 (4.1)
V

Define the functions a and P as follows.

a(t) Is A(t,x(t),X(t))	 (4.2)

P(t) a B(t,x(t),%(t))	 (4.3)

From the hypotheses it is clear that a and p are continuous and have at least
r continuous derivatives at tc . The switching function + as defined by (2.7)
has exactly 2q + r - 1 continuous derivatives at tc.

i

n
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Let E be a nonzero real number of arbitrarily small magnitude such

that tc + E is a point on the nonsingular side of t c and tc - E is a point on the

singular side. Let u  and us designate the control u on the nonsingular and

singular sides of tc , respectively. By % (tc) and usi) (tc) we mean the limit

as E	 0 of u (i) (tc + () and u (i) (tc - E ) , respectively.

We wish to .expand +(tc + E) in a Taylor series about tc . Let k = Zq + r.
Then + (k) will be the lowest order derivative of the switching function which
is discontinuous at tc , and since $ 0 on the aingular side of tc , the first non-
zero term of the Taylor series will be the term containing + (k) . Noting that

r
(k) a Aa + pu	 (4.4)

dt

we can write

+	 = E k (r)	 + r(r)p(r-i)(t)u(i)] +k(tck• 	(tc)	 i cn (tc )	 0(E)	 (4.5)
J=O

where Leibniz l s formula [6] for differentiation of a product has been used to
differentiate pun. 	

r

On the singular arc

+(O = a+Pusa0

Therefore, a a -0 us , and

a (r) = Z PU-
i=o

 = - f • r 
p (r- i) u (i)

dt
r	 s	 i)	 s. 

Substituting from (4.7) into (4.5)

(4.6)

(4.7)

L. r(r)
Vtc +E jk:	 iP (r-i) (tc ) [u 4) (tc) - u8i) (tc) + 0 (E

i=o

•	 If r > 0,

Mu(t	 Mc) = U M 	 1c),	 i = 0,... ,r - 

Therefore, (4.8) b^acomes

(4.8)

(4.9)
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k

(tc +') a 4 (tc ) ^unr) (tc) - U (r) (tc) ] + 0 (4 k)
	

(4.10)

Let c = s 	 + E	 that8n ^ 
(tc 	 ) 

so	 u n (t) a wK(t). Then recalling that un ) (tc)
i ^ u ni) {tc + 0 we have

uni) (tc) U wK (1) (tc), 1 = 0, ... , r	 (4.11)

Now consider the following series expansion on the singular arc.

QK (t - E) - u {t _ i) _	 - 
t QK (i) (t ) • u (i) lt ) + 0 (E r)	 (4.12c	 c	

i=o V	 c	 a c	 )

The right hand side of (4.12) can be simplified using (4.9) and (4.11) to obtain
r

cK(t - E) - u(t - E) = ( I u (r) (t ) - u(r) (t) + 0 (Er)

	 (4.13)
•	 c	 c	 r.	 n c	 s c

Substituting from (4.13) into (4. 10) and recalling that k = 2q + r, we obtain

sq ,

Inc+
E ) _ (_ 1)r 

Ek P(tc) [
QK(tc

- E)-u(tc-E)]+ 0(Ek)	 (4.14)

From the application of the minimum principle on the nonsingular subarc i(Equation (2.9)) we have v = 1 if +(t C  + t) < 0 and c = -1 if +(t c  +E)> 0.

Therefore, the following inequality must hold.

(- 1 ) t a(tc)IK(tc - E) u(tc - E)] < 0	 {4.15)

From the GLC condition we have

(-1)q Atc) > 0	 (4.16)

Multiplying the left hand side of (4. 15) by the positive quantity in (4-16) we

obtain

(-1)q+r 4 z 02(t c ) [ K (tc - 0 1 u (tc - 
1)]< 0	 (4.17)

Since I u (t ) 1	 9 K (t) for all t c (to, t f], and the singular are is tacitly assumed

to be interior almost everywhere, the bracketed quantity in (4-17) is strictly

ti
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•	 positive, regardless of the choice of sign on ±u(tc - 0. Also Etq > 0 regard-
less of the sign of E . Therefore, condition (4.17) reduces to

(-1)q+r < 0	 (4.18)

from which it is clear that q + r is an odd integer. This completes the proof.

Theorem 1 implies the following important corollaries.

COROLLARY 1. In q-even problems, assuming u is piecewise analytic

and the strengthened GLC condition is satisfied, the optimal control is continu-

ous at each junction.

COROLLARY 2. In q-odd problems, assuming u is piecewise analytic
and the strengthened GLC condition is satisfied, the optimal control either has
a jump discontinuity at each junction, or else the singular control joins the

•	 boundary smoothly, i, e. , with continuous first derivative.

In the corollaries above, especially Corollary 1, which applies to the
ID

q-even case, the assumption that u is piecewise analytic is not to be taken
lightly. In fact, the authors have not seen or been able to produce a q-even
example with a continuous junction, i. e. , the junction is usually nonanalytic if
q is even.

The conclusions reached by Kelley, Kopp, and Moyer [3 ] are consistent
with those stated in Corollaries 1 and 2, with one important exception—they
ruled out the possibility of a continuous junction for q- odd problems. This
erroneous conclusion resulted from the claim that continuity of u implies
(8/ 8u)Hutq) > 0 which is not true in general, as can be seen from (4.15) (in
which 0 n (8/ Su) Hutq) ) . That such a junction is realizable will be demonstrated
by means of a simple example in a later section.

Theorem 1 requires that the strengthened GLC condition be satisfied
at the junction point. While this is the usual and most important case, the
possibility exists that the GLC condition is satisfied with equality. To treat
this case, note from Definition 3 that for a qth order singular arc the GLC
expression (8/ 8u)H (Zq) (i, e. , ^) cannot be identically zero on the singular sub-
arc. The refore. in view of our analyticity asrsumpt;ons, a derivative of some

I.
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order must be nonzero at the junction point t c even if P (tc) = 0. This leads
to the following theorem, which is a generalization of Theorem 1, but is stated

•	 separately to avoid obscuring the result for the important case covered by
Theorem '1.

THEOREM 2. Let tc be a point at which singular and nonsingular subares of
an optimal control u are joined, and let q be the order of the singular arc.

f	 Assume that the control is piecewise analytic in a neighborhood of t c . Let
U(r) (r ? 0) be the lowest order derivative of u which is discontinuous at tC,

and let (m) (m '_ 0) be the lowest order derivative of the GLC expression

(8/8u) Hu2q) = P which is nonzero at tc . Then, (i) if m r, q + r + m is an

odd integer; (ii) if m > r, -sgn
(m) (t+)P (m) 

(t 	
(-1)q+r+m .

C	 c

Proof Outline. The proof is similar to that for Theorem 1; however,
in order to obtain a nontrivial term in the Taylor series expansion for + (tc + E) ,

one must consider higher order terms with the result that (4.15) is replaced

by

(-1)rEZq
+m^(m)(tc) [K 

(tc - E) ± us (tc - E).] < 0	 (4.19)

A Taylor series expansion for P (t) on the singular arc yields

m
Ptc - E) _ M! 	 (tc) + 0 (Em) .	 (4.20)

where the subscripts s and n onp	 P m ) (tc ) indicate the limit at t  on the singular

and nonsingular sides, respectively. Since P( s) (tc) # 0, from the GLC condition

and (4 . 20) we have

q+m m (m)
(-1)	 E Ps (tc) > 0	 (4.21)

From (4-19) and (4. 21) it follows that

(-1)q+r+m ^(m) (t^) p(m) (tC} < 0	 (4.22)

If m r, P(m) is continuous at #c , in which case (4- 22) implies that q + r + m

is an odd integer. If m > r, p(m) may not be continuous at tc , and the conclu-

sion of Theorem 2 for this case follows.

N
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	 The main restriction in Theorems 1 and 2 is the assumption that the

control is piecewise analytic in a neighborhood of the junction. This hypothe-

sis is usually satisfied on the singular subarc, but not always on the nonsingu-

lar subarc. Thus, we are led to consider properties which do not require the

assumption of analyticity, as stated in the following theorem. The functions

A and B in this theorem are those defined by the identity (4. 1) .

THEOREM 3. Let u be an optimal control which contains both singular and

nonsingular subares, where the singular sub arcs are of order q. Then, (i) if

Hutq) # 0 on the nonsingular side of a junction, the control must be discontinu-

ous; (ii) if Huiq) = 0 on the nonsingular side of a junction and B # 0 at the

function, the control must be continuous; (iii) if A = 0 and K(tc) # 0 at a junc-
tion point tc , the control must be discontinuous.

Proof. Using the same notation as in the proof of Theorem 1, and re-
calling that Huiq) = 0 on the singular subarc, we have for case (i)

a (tc) + P (tc ) un (tc ) # 0 = a (tc) + (tc ) us (tc)	 (4.23)

from which we obtain u  (tc) # us (tc ) .

For case (ii) we have

a (tc) + P (tc ) un (tc ) = 0 = a (tc) + P (tc ) us (tc )	 (4.24)

Since P(tc) # 0, we :rust have un (tc ) = us(tc).

For case (iii) A = 0 implies u s = 0, and since I un (tc )^ = K(tc ) # 0, the

control must be discontinuous.

Case (El i) of Theorem 3 may appear to be a rather special case, but it

occurs frequently enough to be of interest Note that this result is independ-

ent of an even or odd assumption. Because of this, we can couple (iii) with

•	 the previous result for q-even problems to obtain_ the following interesting

property.
N

COROLLARY 3. if q is even, A = 0, K (t c ) # 0, and P(tc) = B (tc , x (tc)

x (tc )) # 0, where tc is a junction point between optimal singular and nonsingular
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•	 subares , then the junction is nonanalytic .

Proof. Assume the contrary, i. e. , that the optimal control is piece-

wise analytic in a neighborhood of tc . Then by Corollary 1, the control is

continuous at tc . But, by Theorem 3 (iii) the control is discontinuous, which

supplies the necessary contradiction.

In the next section this corollary will be used to predict the nonanalytic.

junction in the well-known Fuller problem.
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5. -Example of a NonanaWic Junction

Consider the Fuller problem 17 ], which is to minimize

T

J =4JX2 dt

subject to

xl = xz ,	 xi (0) = 41 # 0	 (5.2)
xt = u ,	 xi (0 ) = 4a

IuI as 1	 V	 (5.3)

where T is fixed. The Hamiltonian, the multiplier equations, and the switch-
ing function are given by

H = XI x2 + X Z u +4x 
2 
	 (5.4)

X i - -xi 	 Xi (T) = 0	 (5.5)
12 = - X i	 X2 (T) = 0

= Hu = Xi .	 (5.6)

The lowest order derivative of H u which contains u explicitly is

H (4) = u	 (5.7)U

from which we see that the order of the singular arc is even, namely q = 2.

Also, the strengthened GLC condition holds, and A(t, x, X) = 0. Thus, we

have precisely the conditions of Corollary 3, indicating that any junctions
which occur must be nonanalytic junctions.

This problem has treen studied thoroughly by Fuller (7] and Johansen

[8), and the result is well known. The singular arc is given by

us = xi = xz = 0 (5.8)

Since i # 0, the initial control must be nonsingular. The nonsingular arc is

characterized by the nonlinear differential equation
+(4) 

= -sgn^	 (5.9)

X



0

The solution of (5.9) yields a switching function with an infinite number of

zeros such that the ratio of the lengths of successive intervals between zeros

•	 is a constant. If T is sufficiently large, the resulting nonsingular (bang-bang)

control drives the state to the origin in a .finite time t c , with an infinite num-

ber of switches occurring in a neighborhood of t c , at which point the optimal

control becomes singular. The control is clearly discontinuous at the junction

point tc , as it must be according to (iii) of Theorem 3. Even though q is even,

Corollary 1 is not violated because the control is not piecewise analytic in a

neighborhood of the junction.

The predicted behavior at the junction is useful knowledge for numeri-

cal computational schemes, e. g. , Jacobson [9] was able to successfully com-

pute bang-bang solutions for this problem with T sufficiently small so that

the singular arc did not occur. However, for large T the nonanalytic junction

came into play After computing about ten switches, the method became un-

stable [10].

Note that the optimal control for this "innocent looking", second-order

example is measurable but not piecewise continuous. Aside from its physical

applicability, the existence of such examples is useful for motivating the

assumption of measurable controls in the proof of the minimum principle. I
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6. Example of a Smooth Junction with q Odd

This example demonstrates not only the realizability of a smooth junc-

tion with q odd, but also the dependence of junction phenomena upon boundary

conditions. For this case we consider the performance index

T
J = -} (xZ - xi) dt	 (6.1)

0

where T = 2.985. The equations of motion and constraints are given by

xl = xi	xi (0) = 0,	 xl (T) _ 0*1	 (6.2)

Z = u	 xz (0) = 1,	 xt (Jr) _ (rZ .

^u	 (6.3)

The Hamiltonian and the multiplier equations are given by

H = X i xt + X Z U +4xi - -}xi	 (6.4)

il = xl

(6.5)
iz = -X1 - xi

The switching function and its second derivative are

4 E Hu =X Z 	(6.6)

Hu = -XI - u	 (6.7)

so the singular arc is first order, i. e. , q is odd. From (6.7) we see that the
strengthened GLC condition is satisfied. Setting the right hand side of (6.7)

equal to zero and substituting in the equations of motion (6.2) , it is readily

verified that a singular arc emanating from the initial state (0, 1) is given by

us = -sin t

xi = sin t	 (6.8)

xz = cos t



J.

1.

If the terminal state (6- 1 , c Z ) is choss-:
the solution is totally singular, as can be

References [ 1 ] and [ 2],	 However, in this ;^^.,..  _ --;T<:ce:3ea V

tions.	 Consider the case where o- 1 = 0, v Z	-' —_	 e w	 j_^ case

as a candidate for the optimal control

-sin t, t E [0,

2 .

This control is admissible and satisfies all
,ondiu(x_

mality, including that of Theorem 1.	 Therf,
at t	 .

trol and its first derivative are continuous a :^- ^^pond
`^-	 discontinuous	 so we have r = 2_4 = 1, and ,cui integ=

The authors are unaware of any wore;; __ 	 :-_:.	 cond.__
literature which are applicable to this part.,_, ^,	 ^ .r srobler-

convex and containing both singular and rCs.

we employed a gradient type numerical me~ r  , ,---	 th,r^	 r1mt	 r -_.
control is indeed optimal, within the bound: ^r	 juste_.
modified conjugate gradient method of Pag e; t t." 	 7 resside [1:
with penalty functions to enforce the term..►► -i;.
shown in Figure 1. 	 The control is continu(^,; ;^ 	 ,y rf	 at the
expected.

It is apparent that the fortuitous oc^ - ^..,^ 	 , :his smc►v. r- .
a direct result of our judicious choice of t"-'-- s ,,. ,;st -,oundar-*
fact, to generate this phenomenon, the fori,, •,r 	

^ardidate c -.--
selected on the basis of intuition; then a cO^,.

trajectory was selected as the fixed termin4: .,  
I I :d finaL';

ing time was taken to be the explicit final ti,,-

By changing the terminal state, we v1,,,, 	 to genera', , 	Y
controls, which undoubtedly are the usual ^:a;,, 

0 11wFSe are sb: ,

2 and 3. For these cases r = 0, and the c( b F, , 11, #,F t or Theoreii,

again. To further emphasize the special r•l,,, i , 41 I,, i, or the srw,-,- .
the phase plane trajectories for the control.,^, (, 1 ^:^ F ^.cs 1- 2 a i :

I
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7. Conclusion

Necessary conditions for the optimality of junctions between singular

and nonsingular subares in singular optimal control problems have been de-

veloped. Necessary conditions developed previously by Kelley, Kopp, and

Moyer [3], which involve an analyticity assumption, have been clarified and

extended. The main result in this direction is that the sum of the order of the

singular arc and the order of the lowest time derivative of the control which

is discontinuous at the junction must be an odd integer when the strengthened

generalized Legendre-Clebsch condition is satisfied. Also, new necessary	 I

conditions which do not involve an analyticity assumption have been developed.

These conditions aid mainly in characterizing problems which may possess

nonanalytic junctions

It should be emphasized that these are local necessary conditions for

optimality. Yet, as indicated by the example in Section 6, the point at which
w

a junction occurs is determined mainly by initial and terminal boundary con-

ditions, i, e. , by essentially nonlocal information. This means that any junc

tion theory which, for example, might be used to establish criteria for switch-

ing between singular and nonsingular arcs in_an indirect computational

scheme will have to take such nonlocal information into account.

It is becoming increasingly apparent that a close relationship exists

between singular problems and bounded state problems [12][13]. In this re-

gard it is interesting to note that the result of Theorem 1 bears some similar-

ity to a result of Jacobson, Lele, and Speyer [13] which identifies certain

properties of optimal trajectories associated with odd order state space con-

straints. Such similarities suggest the possibility of a duality between these

two classes of problems which might be profitably exploited.
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Figure 4. Phase plane trajectories for the
controls in Figures 1 and 2.
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